

Plano de Ensino

Período Letivo: 2024A

Grupo: T01 - NÚCLEO EAD

Disciplina: 7857 - ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Ementa

Apresenta a organização de computadores explicando processador, memória, e entrada/saída. Explica o sistema de memória e os Componentes da Unidade Central de Processamento (UCP), da Unidade Lógica e Aritmética (ULA) e da Unidade de Controle. Mostra o conjunto de instruções, os Modos de Endereçamento, a Memória Cache, o Pipeline, a Memória Virtual e os Mecanismos de Entrada/Saída.

Bibliografia Básica

Referência	Biblioteca Online
WEBER, Raul Fernando. Fundamentos de arquitetura de computadores. 4. Porto Alegre 2012	Minha Biblioteca https://integrada.minhabiblioteca.com.br/bo oks/9788540701434
DELGADO, José. Arquitetura de computadores. 5. Rio de Janeiro 2017	Minha Biblioteca https://integrada.minhabiblioteca.com.br/bo oks/9788521633921
Hennessy, John. Arquitetura de Computadores - Uma Abordagem Quantitativa. Disponível em: Minha Biblioteca, (6th edição). Grupo GEN, 2019.	-

Bibliografia Complementar

Referência	Biblioteca Online/Acervo Externo
MACHADO, Francis Berenger. Arquitetura de sistemas operacionais. 5. Rio de Janeiro 2013	Minha Biblioteca https://integrada.minhabiblioteca.com.br/bo oks/978-85-216-2288-8
PAIXÃO, Renato Rodrigues. Arquitetura de computadores PCs. São Paulo 2014	Minha Biblioteca https://integrada.minhabiblioteca.com.br/bo oks/9788536518848
MONTEIRO, Mario A. Introdução à organização de computadores. 5. Rio de Janeiro 2007	Minha Biblioteca https://integrada.minhabiblioteca.com.br/bo oks/978-85-216-1973-4
Hennessy, John. Organização e Projeto de Computadores. Disponível em: Minha Biblioteca, (5th edição). Grupo GEN, 2017.	https://integrada.minhabiblioteca.com.br/rea der/books/9788595152908/epubcfi/6/2%5B %3Bvnd.vst.idref%3Dcover %5D!/4/4/2%5Bcover01%5D/2%4050:86
HENNESSY, John. Arquitetura de Computadores - Uma Abordagem Quantitativa. [Digite o Local da Edito-ra]: Grupo GEN, 2019. E-book. ISBN 9788595150669 Acesso em: 22 abr. 2024	-

Objetivos

Dimensões Profissionais

 Introdução de conceitos relacionados à Arquitetura de Computadores, apresentação do histórico de evolução das arquiteturas, caracterização de conceitos e tipos de computadores. Introdução ao conceito de linguagem de montagem. Execução de instruções em arquitetura seguindo um datapath.

Dimensões Pessoais

 O conhecimento dos principios abordados nesta disciplina permitirá ao aluno desenvolver aplicaçãoes pensando na arquitetura dos computadores atuais.

Dimensões Sociais

 Nesta disciplina o aluno terá a visão da estrutura de hardware dos computadores. Essa percepção fará com que ele desenvolva aplicações pensando no computadores dos usuarios finais.

Conteúdo Programático

- 1. Evolução da arquitetura de computadores
- 2. Os principais componentes de um computador
- 3. Representações de dados e aritmética de computadores
- 4. Arquitetura RISC e CISC
- 5. Circuitos lógicos sequenciais
- 6. Componentes eletrônicos básicos
- 7. Funcionamento e Soluções (Pipeline)
- 8. Tecnologia e Hierarquia de Memórias
- 9. Memória RAM e CACHE
- 10. Registradores e Memória Secundária
- 11. Tipos e Características de Barramentos Internos e Externos
- 12. Entradas, Saída e Interrupções Programadas

Nas aulas ao vivo, será apresentado ao aluno o simulador de do processador NEANDER, com o proposito de apresentar a execução de operações dos registradores em um processador.

Instrumentos e Critérios de Avaliação

Critérios para composição da Média Semestral:

Para compor a Média Semestral da disciplina, leva-se em conta o desempenho atingido na avaliação formativa e na avaliação somativa, isto é, o engajamento do aluno ao longo da disciplina, a nota alcançada na atividade virtual e na prova, da seguinte forma:

Engajamento = 50%

- Entrada na Unidade da Aprendizagem 10%
- Clique em todos os itens da Unidade de Aprendizagem 15%
- Entrega do Desafio 50%
- Entrega do Exercício 25% (*5 por questão realizada)

Atividade virtual = 25%

Prova = 25%

Se a Média Semestral for igual ou superior a 4,0 e inferior a 7,0, o aluno ainda poderá fazer o Exame Final. A média entre a nota do Exame Final e a Média Semestral deverá ser igual ou superior a 5,0 para considerar o aluno aprovado na disciplina.

Assim, se um aluno tirar 6 na Média Semestral e tiver 5 no Exame Final: MF = 6 + 5 / 2 = 5,5 (Aprovado).